液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算  被引量:15

Numerical Simulation of Heat Transfer and Fluid Flow in Cooling Channel of the Liquid Rocket Engine Thrust Chamber

在线阅读下载全文

作  者:吴峰[1] 王秋旺[1] 罗来勤[1] 孙纪国 

机构地区:[1]西安交通大学动力工程多相流国家重点实验室,陕西西安710049 [2]北京航空动力研究所,北京100076

出  处:《航空动力学报》2005年第4期707-712,共6页Journal of Aerospace Power

摘  要:应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,冷却剂比热容及金属固体物性随着温度而变化。计算采用标准k-ε双方程湍流模型及气-固耦合算法。结果表明:推力室燃气侧壁面的温度和热流密度的最高点均发生在喉部附近,喉部横截面固体区域最大温度梯度靠近燃气,喉部附近氢气在垂直主流方向的截面上产生了二次流。气固耦合面最大热流密度及最大对流换热系数同样位于推力室喉部附近。The turbulent fluid flow and heat transfer in a regenerative-cooling channel of the liquid propellant rocket engine were numerically investigated by solving three-dimensional elliptical Navier-Stokes equations. The coolant is hydrogen,whose thermal properties such as thermal conductivity, density, dynamic viscidity etc. are varied with both temperature and pressure. The specific heat of hydrogen and thermal properties of solid metal are varied with temperature only. The standard k-ε turbulent model and gas-solid coupled technique was adopted. The results show that both the highest temperature of hydrogen and the maximal wall heat fluxes at the hotgasside occur at the throat region,and the maximal cross-sectional temperature gradients of the solid region occur close to the hot-gas side. In addition, the secondary flow is generated near the throat region perpendicular to the main flow, the highest heat flux and convective heat transfer coefficient of gas-solid coupled interface also occur at throat region.

关 键 词:航空 航天推进系统 液体推进剂火箭发动机 再生冷却通道 变物性 气-固耦合算法 

分 类 号:V434.14[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象