检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Physics Letters》2005年第9期2396-2399,共4页中国物理快报(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant No 60401007.
摘 要:We report the magneto-optic (MO) coupling interaction of guided optical waves (GOWs) with magnetostatic waves (MSWs) in MO film waveguides using arbitrarily tilted bias magnetic fields. The universal MO coupledmode equations are obtained and can be applied to the collinear or noncollinear interactions of the GOWs with magnetostatic forward volume wave (MSFVW), magnetostatic backward volume wave (MSBVW) and magnetostatic surface wave (MSSW). As a typical example, the noncollinear diffraction interaction of the GOW with the MSFVW excited by single-element microstrip line transducer in the yttrium-iron-garnet (YIG) film is analysed in detail. For the case of normal magnetization, the calculated plot is consistent with the experimental results in the first passband. By comparison, the diffraction efficiency (DE) can further be improved by optimizing the magnetization direction. The maximum DE gain can reach 5. 7 dB under the appropriately inclined bias magnetic field at φ = 180° and θ = 9°.We report the magneto-optic (MO) coupling interaction of guided optical waves (GOWs) with magnetostatic waves (MSWs) in MO film waveguides using arbitrarily tilted bias magnetic fields. The universal MO coupledmode equations are obtained and can be applied to the collinear or noncollinear interactions of the GOWs with magnetostatic forward volume wave (MSFVW), magnetostatic backward volume wave (MSBVW) and magnetostatic surface wave (MSSW). As a typical example, the noncollinear diffraction interaction of the GOW with the MSFVW excited by single-element microstrip line transducer in the yttrium-iron-garnet (YIG) film is analysed in detail. For the case of normal magnetization, the calculated plot is consistent with the experimental results in the first passband. By comparison, the diffraction efficiency (DE) can further be improved by optimizing the magnetization direction. The maximum DE gain can reach 5. 7 dB under the appropriately inclined bias magnetic field at φ = 180° and θ = 9°.
关 键 词:VOLUME WAVES BRAGG-DIFFRACTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200