布朗运动的几何叠对数律  

在线阅读下载全文

作  者:高勇[1] 

机构地区:[1]西安交通大学理学院信息与系统科学研究所 西安710049

出  处:《科学通报》1995年第7期590-593,共4页Chinese Science Bulletin

摘  要:设{ω(t),t∈[0,1]}为d维布朗运动,令C_t(ω)=co{ω(s);0≤s≤t}((?)t∈[0,1]),称{C_t(ω),t∈[0,1]}为布朗凸包.Levy早在1956年就证明了其中V(·)表示凸集的体积泛函,m_d为非零常数.近来,关于布朗凸包的研究重新引起了人们的极大兴趣,因为布朗凸包描述了布朗运动的几何性态.Khoshnevisan在文献[3]中研究了C_t(ω)的局部渐近性态,他在引言中指出,由于{C_t,t∈[0,1]}实际上是一个“紧凸集值过程”,因此以前的研究(也包括文献[3])均将问题转化到关于C_t(ω)的某些“单调泛函”的研究上.

关 键 词:闭凸包 叠对数律 维纳过程 几何性态 

分 类 号:O211.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象