机构地区:[1]College of Materials Science and Engineering, Nanjing University of Technology [2]Jiangsu Provincial Key Laboratory of New Materials of Inorganic and Its Composites, Nanjing University of Technology
出 处:《Journal of Rare Earths》2010年第6期940-943,共4页稀土学报(英文版)
基 金:Project supported by the Advanced Project of The General Reserve Department of PLA (9140A××××6401)
摘 要:Er3+-substituted W-type barium ferrites Ba1-xErx(Zn0.3Co0.7)2Fe16O27 (x=0.00, 0.05, 0.10, 0.15, 0.20) were synthesized by polymer adsorbent combustion method. Samples were characterized by X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and network analyzer to investigate the relationships among Er3+ concentration, crystal structure, surface morphology and electromagnetic properties. All the XRD patterns showed pure phase of W-type barium ferrite when x≤0.15, while the impurity phase of ErFeO3 appeared when x=0.20. The pure W-type barium ferrite showed a hexagonal flake shape. In addition, the microwave electromagnetic properties of samples were analyzed in the frequency range of 2-18 GHz. It was indicated that the electromagnetic properties were significantly improved when Er3+ doping content was 0.10. The reasons were also discussed using electromagnetic theory. The optimized ferrite exhibited excellent microwave absorption performance. The maximum of reflection loss (RL) reached about-27.4 dB and RL was below-10 dB at the frequency range from 8.4 GHz to 18 GHz, when the thickness was 2.6 mm.Er3+-substituted W-type barium ferrites Ba1-xErx(Zn0.3Co0.7)2Fe16O27 (x=0.00, 0.05, 0.10, 0.15, 0.20) were synthesized by polymer adsorbent combustion method. Samples were characterized by X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and network analyzer to investigate the relationships among Er3+ concentration, crystal structure, surface morphology and electromagnetic properties. All the XRD patterns showed pure phase of W-type barium ferrite when x≤0.15, while the impurity phase of ErFeO3 appeared when x=0.20. The pure W-type barium ferrite showed a hexagonal flake shape. In addition, the microwave electromagnetic properties of samples were analyzed in the frequency range of 2-18 GHz. It was indicated that the electromagnetic properties were significantly improved when Er3+ doping content was 0.10. The reasons were also discussed using electromagnetic theory. The optimized ferrite exhibited excellent microwave absorption performance. The maximum of reflection loss (RL) reached about-27.4 dB and RL was below-10 dB at the frequency range from 8.4 GHz to 18 GHz, when the thickness was 2.6 mm.
关 键 词:W-type barium ferrite rare earth PERMITTIVITY PERMEABILITY microwave absorbing properties
分 类 号:TM277[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...