检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁晓峰[1]
机构地区:[1]盐城师范学院信息科学与技术学院,江苏盐城224002
出 处:《辽宁大学学报(自然科学版)》2011年第4期358-361,共4页Journal of Liaoning University:Natural Sciences Edition
摘 要:词语之间相似度的计算广泛应用于信息检索、文本主题抽取、文本分类、机器翻译等研究领域.词语之间的相似度的计算通常有两方法,基于统计的方法和基于世界知识的方法.对于中文的词语相似度计算,有人提出一种利用《知网》计算词语相似度的方法,该方法通过计算《知网》义原的相似度进而计算词语的相似度,但是该方法在计算义原相似度时没有考虑义原在层次体系树上的深度以及区域密度.在此基础之上深入研究《知网》的义原层次体系,将义原在层次体系树上的深度和区域密度两个因素添加到义原相似度计算中.最后,实现了该计算方法并得到实验结果,将实验结果与改进前的计算方法的结果比较,发现考虑义原在层次体系树上的深度和区域密度得到的结果比不考虑这两个因素得到结果更符合实际.The similarity computation between words is widely used in many research area,such as information retrieval,extracting subject of documents,text clutering,machine translation and so on.There used to be two ways to compute the similarity between words,one is based on statistics,another is base on the ontology.There is a method based HowNet to calculate the similarity between Chinese words already.This method calculate the similarity between words thought calculate the similarity between primitives of HowNet.But this method have ignored the depth and density of primitives.We add the factor of primitive depth and density to the method above though researching of HowNet carefully.We realize our method and got the experimental data,and we find our method is more practical than the method already existent.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40