检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学应用物理研究所,浙江杭州310027
出 处:《中国医学影像技术》2005年第8期1285-1288,共4页Chinese Journal of Medical Imaging Technology
摘 要:在fMRI数据中,因为激活体素(voxel)的数目远小于总的体素数目,由此产生了数据的不平衡性问题。以往解决此问题的方法除了应用大脑本身的生理结构来限制体素的数目外,统计方法常被应用于去掉那些肯定不激活的体素。本文章提出了一种新的解决数据不平衡问题的方法,用改进模糊c均值(MFc)方法将总的数据分成两个子集,而激活的体素总是聚在一个子集中,由此可以将需要进行分析运算的体素数目减至一半,这样不但可以有效的解决fMRI数据存在的不平衡问题,而且也提高了聚类分析的效率。MFc方法与统计方法的最大不同是,它是完全数据驱动的。In fMRI dataset, the population of actived voxels is always much less than the total population of the voxels, and that produced an ill-balanced dataset. Some methods, such as limiting the analysis to the gray matter voxels where the BOLD signal is expected and removing the voxels that is absolutely non-actived based on statistical criteria, have been used to treat the ill balanced dataset. In this article, a new method, Modified Fuzzy c-means (MFc) method, is proposed to treat the ill-balanced dataset of fMRI. The MFc method is used to classify the voxels into two clusters with nearly the same population and all actived voxels are contained in one cluster. Thus we get nearly half voxels to analysis and the ill-balanced dataset can be treated. The efficiency of clustering analysis is also boosted. The main difference from other statistical methods is that it is data-driven.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249