基于数值优化的改进BP算法在旋转机械故障诊断中的应用  被引量:8

Application of Improved BP Algorithm Based on Numerical Optimization to Fault Diagnosis of Rotating Machinery

在线阅读下载全文

作  者:郑德忠[1] 葛文谦[1] 

机构地区:[1]燕山大学电气工程学院,河北秦皇岛066004

出  处:《传感技术学报》2005年第3期510-513,共4页Chinese Journal of Sensors and Actuators

摘  要:机械设备的安全运行对企业的现代化生产至关重要,因而对故障机械的诊断近年来受到了普遍关注,而神经网络具有分辨原因及故障类型的能力,在故障诊断领域中得到了广泛应用。本文针对传统BP算法存在的收敛速度慢以及容易陷入局部最小点等问题,给出了两种基于数值优化方法的改进BP算法,应用改进的BP算法对旋转机械故障进行诊断研究,结果表明,加快了网络的收敛速度。证明该算法比BP算法精度更高且收敛速度更快。The safety of machine equipment running is very important to modern production of corporation, so fault machinery diagnosis is paid more attention to in recent years. Neural networks have the ability of distinguishing the types and reason of faults, so it's widely applied in the area of fault diagnosis. Aiming at the problems that BP algorithm has slow convergence rate and is likely to fall into local minimum point, this paper presents two improved BP algorithm methods based on numerical optimization. The research result of applying the improved BP algorithm to the fault diagnosis of rotating machinery shows that it can make convergence rate of network faster. It is proved that the method has higher precision and faster convergence rate than the BP algorithm.

关 键 词:神经网络 故障诊断 旋转机械 共轭梯度 LM算法 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象