Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network  被引量:3

Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network

在线阅读下载全文

作  者:SHEN Yan XIE Mei-ping 

机构地区:[1]School of Science, Harbin Engineering University, Harbin 150001, China [2]School of Information Management and Engineering, Shanghai University of Finanee and Economics, Shanghai 200433, China

出  处:《Journal of Marine Science and Application》2005年第2期56-60,共5页船舶与海洋工程学报(英文版)

摘  要:A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.

关 键 词:extreme short time prediction diagonal recursive neural network recurrent prediction error learning algorithm UNBIASEDNESS 

分 类 号:U661.4[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象