检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳建筑大学信息与控制工程学院,沈阳110168
出 处:《计算机工程与应用》2005年第25期43-45,87,共4页Computer Engineering and Applications
基 金:国家科技成果重点推广项目计划(编号:2004EC000096)资助
摘 要:为了解决图像匹配过程中计算速度慢和匹配精度不高的缺陷,提出了一种基于群体增量学习(Population-based Increased Learning,简称PBIL)算法的匹配方法。PBIL算法是一种基于概率分析的进化算法。它集成了基于函数优化的遗传搜索和竞争学习两种策略,将进化过程视为学习过程,通过竞争学习所获得知识来修正生成概率,进而指导后代的生成。给出了理论分析和实验分析。在实验中,分析了不同终止条件下的算法性能,并将其与传统序贯相似性检测算法(SSDA)和遗传算法进行了比较。实验结果表明基于该算法的图像匹配具有运算速度快、匹配精确等优点,且收敛过程非常稳定。To solve the problem of slow computation speed and low accuracy in image matching,a new approach to image matching using Population-based Increased Learning algorithm(PBIL) has been proposed.PBIL algorithm is a probability learning based Evolutionary Algorithm.It integrates genetic search strategy based on function optimization with competitive learning strategy,regards evolution as a learning process,revises the generation probability according to knowledge come from competitive learning,then produces the offspring according to the probability.Theoretic analysis and experimental analysis are presented.In experiment,have analyzed the algorithmic performance of different finish conditions,and then compared it with the conventional sequential similarity detection algorithm and genetic algorithm. Results of experiment show this approach is fast in operation,and has high accuracy in matching,and the convergence is very stable.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49