检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031 [2]电子对抗国防科技重点实验室,四川成都610036
出 处:《电波科学学报》2005年第4期440-445,共6页Chinese Journal of Radio Science
基 金:国防科技重点实验室基金项目(NEWL51435QT220401);国家自然科学基金项目(No.60474022);西南交通大学博士生创新基金项目(2003);教育部高等学校骨干教师资助计划项目(教技司[2000]65号)
摘 要:针对现有方法识别率低和没有考虑噪声影响的问题,提出一种新的雷达辐射源信号识别方法。将近似熵(ApEn)和范数熵(NoEn)构成特征向量,用神经网络分类器实现自动分类识别。ApEn是定量描述信号复杂性和不规则性的有效测度,NoEn是定量表征信号能量分布的有效参数。理论分析和实验结果表明,熵特征类内聚集性强、类间分离度大,在较大信噪比范围内均能获得非常满意的正确识别率,证实了所提出方法的有效性。To solve the problems of low recognition rate and noise effect in radar emitter signal recognition, a novel approach was proposed. In this approach, approximate entropy (ApEn) and norm entropy (NoEn) constituted feature vector, and neural network based classifiers were designed to identify radar emitter signals automatically. ApEn is a good measure of complexity and irregularity of signals and NoEn is a useful parameter for quantifying the energy distribution of signals. Theoretical analysis and experimental results show that ApEn and NoEn features have small within-class distance and large between-class distance, and can achieve very satisfying accurate recognition rate when signal-to-noise rate varies in a large range. It is proved to be a valid and practical approach.
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15