检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙理工大学计算机与通信工程学院
出 处:《计算机工程与应用》2005年第26期37-42,74,共7页Computer Engineering and Applications
基 金:国家自然科学基金(编号:60075019)资助
摘 要:提出了一个新的效用聚类激励学习算法U-Clustering。该算法完全不用像U-Tree算法那样进行边缘节点的生成和测试,它首先根据实例链的观测动作值对实例进行聚类,然后对每个聚类进行特征选择,最后再进行特征压缩,经过压缩后的新特征就成为新的状态空间树节点。通过对NewYorkDriving[2,13]的仿真和算法的实验分析,表明U-Clustering算法对解决大型部分可观测环境问题是比较有效的算法。That presented in this paper is a new utility clustering based reinforcement learning algorithm called U-Clustering.Unlike the U-Tree,it does not use fringe and related statistical test at all.The U-Clustering algorithm groups the instances that have matching history up to a certain length into a cluster based on the observation-action value of them,and makes the feature selecting and feature compressing for each cluster.The new features become new nodes in the agent's internal state space tree.Experimental results in a difficult partially observable driving task called New York Driving show that the U-Clustering algorithm is an effective one for solving the large partially observable problems.
关 键 词:激励学习 效用聚类 部分可观测Markov决策过程
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145