Fast Wavelet Transform for Toeplitz Matrices and Property Analysis  

Fast Wavelet Transform for Toeplitz Matrices and Property Analysis

在线阅读下载全文

作  者:Hong-xia Wang Li-zhi Cheng 

机构地区:[1]Department of Mathematics & System Science, National University of Defense Technology, Changsha 410073,China

出  处:《Acta Mathematicae Applicatae Sinica》2005年第3期459-468,共10页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation under Grants (No.10171109)

摘  要:Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fourier transform (DFT) for Toeplitz matrices, the new algorithms are achieved by compactly supported wavelet that preserve the character of a Toeplitz matrix after transform, which is quite useful in many applications involving a Toeplitz matrix. Results of numerical experiments show that the proposed method has good compression performance similar to using wavelet in the digital image coding. Since the proposed algorithms turn a dense Toeplitz matrix into a band-limited form, the arithmetic operations required by the new algorithms are O(N) that are reduced greatly compared with O(N log N) by the classical trigonometric transforms.Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fourier transform (DFT) for Toeplitz matrices, the new algorithms are achieved by compactly supported wavelet that preserve the character of a Toeplitz matrix after transform, which is quite useful in many applications involving a Toeplitz matrix. Results of numerical experiments show that the proposed method has good compression performance similar to using wavelet in the digital image coding. Since the proposed algorithms turn a dense Toeplitz matrix into a band-limited form, the arithmetic operations required by the new algorithms are O(N) that are reduced greatly compared with O(N log N) by the classical trigonometric transforms.

关 键 词:Wavelet transform Tocplitz matrix fast algorithm 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象