检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院长春光学精密机械与物理研究所图像处理室,吉林长春130033 [2]长春工业大学计算机科学与工程学院,吉林长春130012
出 处:《测试技术学报》2005年第3期287-293,共7页Journal of Test and Measurement Technology
摘 要:针对利用神经网络进行目标识别时特征向量选取中存在的一些问题:如特征向量选取不当,导致不同目标特征向量值可区分性差;相同目标由于大小、平移、旋转角度的不同,导致特征向量值具有较大差异等,首先对样本图像边缘提取,然后对已有的隶属函数进行改造,提出了一种基于模糊理论的阈值分割法,把图像二值化处理,提取出样本图像中目标的边缘轮廓,对其取不变矩.并归一化不变矩,为了避免不变矩数值过小,对其取对数,以此作为BP网络的输入特征向量,进行训练和识别.试验表明该方法能快速有效地识别出目标.It is difficult to choose eigenvectors when using neural network to recogniz object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling, shifting, rotation if eigenvectors can not be chosen appropriately. In order to solve this problem, the image was edged, the membership function was reconstructed and a new threshold segmentation method based on fuzzy theory was proposed to get the binary image. Moment invariant of binary image was extracted and normalized. Some time moment invariant is too small to calculate effectively, so logarithm of moment invariant was taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively, correctly and quickly.
关 键 词:特征向量 模糊理论 隶属函数 二值代图像 BP网络
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117