检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:别荣芳[1]
出 处:《北京师范大学学报(自然科学版)》2005年第4期339-342,共4页Journal of Beijing Normal University(Natural Science)
基 金:国家自然科学基金重点资助项目(19931020);国家自然科学(青年)基金资助项目(60273015;10001006)
摘 要:用模型论方法证明了:对于整数环I及每个正整数n及每一可能类型的n素元组而言,存在不可数无限多个其1阶性质互不全同的含有无限多该类型的n素元组的归纳扩环(文中简称该类型的nT-环),并且存在无限多个正整数对,对每个这样的正整数对(a,b),存在I的nT-扩环R,它适合加a的归纳法,而不适合加b的归纳法.还证明了存在该类型的nT-环R,R的每个元素是3平方和和4立方和.It is shown by model theoretic methods that the following results are valid for any positive integer n and any possible type of n-prime tuples: (1) There exist uncountably infinitely many inductive extensions of the ring I of integers with infinitely many such n-prime tuples(called nT-rings in the following) and these rings are not equivalent to each other in first order logic. (2) There exist infinitely many couples of positive integers such that for each couple(a, b), there exists an nT-ring R which satisfies the inductive principle with step a and does not satisfy the inductive principle with step b. (3) There exist nT-rings R such that every element of R is a sum of 3 squares and a sum of 4 cubes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26