基于模糊优先关系矩阵的系统评价方法  被引量:26

System Evaluation Method Based on Fuzzy Preferential Relation Matrix

在线阅读下载全文

作  者:金菊良[1] 杨晓华[2] 魏一鸣[3] 

机构地区:[1]合肥工业大学土木建筑工程学院,合肥230009 [2]北京师范大学环境科学研究所,北京100875 [3]中国科学院科技政策与管理科学研究所,北京100080

出  处:《系统工程理论方法应用》2005年第4期364-368,共5页Systems Engineering Theory·Methodology·Applications

基  金:教育部优秀青年教师资助项目(教人司[2002]350);安徽省优秀青年科技基金资助项目;安徽省自然科学基金资助项目(01045102);四川大学高速水力学国家重点实验室开放基金资助项目(0201)

摘  要:为处理系统评价中各评价指标的一致无量纲化问题,避开模糊综合评价方法中建立隶属度函数的困难,探讨了用模糊优先关系矩阵A的优度值作为各评价指标的一致化和无量纲化值的新途径。为充分利用A的一致性信息和提高A的优度值计算结果的可信程度,提出了A的最优模糊一致性判断矩阵、一致性指标函数和一致性指标临界值。研制了用加速遗传算法检验、修正A的一致性,并同时计算A各评价对象优度值的新的系统评价方法(AGA-FPRM)。理论和实例分析的初步结果表明,AGA-FPRM方法直观、实用,矩阵修正幅度较小,计算结果稳定、精度高,可在模糊层次分析法理论与实践中推广应用。In order to make consistency and to eliminate dimensions of system evaluation indexes, and to avoid determining membership function in fuzzy comprhensive evaluation, a new approach is studied with which preference values of fuzzy preferential relation matrix A can be used as consistency and nondimension evaluation indexes. Optimal fuzzy consistency judgement matrix, consistency index function and consistency index critical value of matrix A are presented in order to make the most of consistency information of matrix A ,and to improve believable degree of computed preference values of matrix A. A new system evaluation method, named AGA-FPRM, is proposed to check and correct the consistency of matrix A and to compute preference values at the same time by using accelerating genetic algorithm improved by the authors. The results of theoretical analysis and case study show that AGA-FPRM is visual, practical, that correcting range of matrix A less, that its result is both stable and highly precise, and that it possesses important theoretical significance and broad application value in fuzzy analytic hierarchy process.

关 键 词:模糊优先关系矩阵 系统评价 遗传算法 层次分析法 

分 类 号:TV213[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象