A Useful Extension of It 's Formula with Applications to Optimal Stopping  

A Useful Extension of It 's Formula with Applications to Optimal Stopping

在线阅读下载全文

作  者:GeroldALSMEYER MarkusJAEGER 

机构地区:[1]Institut

出  处:《Acta Mathematica Sinica,English Series》2005年第4期779-786,共8页数学学报(英文版)

基  金:Partially supported by the Deutsche Forschungsgemeinschaft(DFG) under Grant SCHM 677/7-1

摘  要:Given a continuous semimartingale M = (Mt)t≥〉0 and a d-dimensional continuous process of locally bounded variation V = (V^1,……, V^d), the multidimensional Ito Formula states that f(Mt, Vt) - f(M0, V0) = ∫[0, t] Dx0f(Ms, Vs)dMs+∑i=1^d∫[0, t] Dxi F(Ms, Vs)dVs^i+1/2∫[0, t] Dx0^2 f(Ms, Vs)d 〈M〉s if f(x0,……,xd) is of C^2-type with respect to x0 and of C^1-type with respect to the other arguments This formula is very useful when solving various optimal stopping problems based on Brownian motion. However, in such application the function f typically fails to satisfy the stated conditions in that its first partial derivative with respect to x0 is only absolutely continuous. We prove that the formula remains true for such functions and demonstrate its use with two examples from Mathematical Finance.Given a continuous semimartingale M = (Mt)t≥〉0 and a d-dimensional continuous process of locally bounded variation V = (V^1,……, V^d), the multidimensional Ito Formula states that f(Mt, Vt) - f(M0, V0) = ∫[0, t] Dx0f(Ms, Vs)dMs+∑i=1^d∫[0, t] Dxi F(Ms, Vs)dVs^i+1/2∫[0, t] Dx0^2 f(Ms, Vs)d 〈M〉s if f(x0,……,xd) is of C^2-type with respect to x0 and of C^1-type with respect to the other arguments This formula is very useful when solving various optimal stopping problems based on Brownian motion. However, in such application the function f typically fails to satisfy the stated conditions in that its first partial derivative with respect to x0 is only absolutely continuous. We prove that the formula remains true for such functions and demonstrate its use with two examples from Mathematical Finance.

关 键 词:Multidimensional Ito Formula Continuous semimartingale Brownian motion Geometric Brownian motion Optimal stopping Smooth fit principle American put option 

分 类 号:O211.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象