相空间路径积分中的Feynman规则和广义Ward恒等式  

Feynman Rules and Generalized Ward Identities in PhaseSpace Functional Integral

在线阅读下载全文

作  者:李子平[1] 

机构地区:[1]北京工业大学应用物理系

出  处:《高能物理与核物理》1996年第8期698-702,共5页High Energy Physics and Nuclear Physics

基  金:国家自然科学基金;北京市自然科学基金

摘  要:基于Green函数的相空间生成泛函,导出了广义正则Ward恒等式.指出无须作出相空间生成泛函中对正则动量的路径积分,即可求得树图近似下的Feynman规则.对场的拉氏量添加一个四维散度项后,场的传播子发生了改变.Based on the phase-space generating functional of Green function, the generalizedcanonical Ward identities are derived It is point out that one can deduce Feynmanrules in tree approximation without carring out explicit integration over canonicalmomenta in phase-space generating functional. If one adds a four-dimensionaldivergence term to a Lagrangian of the field, then, the propagator of the field can bechanged.

关 键 词:路径积分 WARD恒等式 F-规则 量子论 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象