检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学物理学院大气科学系,北京100871 [2]中国气象局北京城市气象研究所,北京100089 [3]北京市气象局,北京100089
出 处:《北京大学学报(自然科学版)》2005年第5期701-709,共9页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:北京市自然科学基金(8032009);国家自然科学基金(40233036);北京市科委奥运基金(H020620190091)资助项目
摘 要:用自动站降水资料作了四维变分同化试验。试验表明,由于它的加入,增加了初始场中的中尺度信息,改进了中尺度数值模式MM5的预报,增强了模拟开始阶段的降水量,改进了降水量的落区预报,减弱了模式开始阶段的“spinup”现象。试验还表明,自动站降水资料的时间变化信息,在同化时也起重要作用。Four-dimensional variation data assimilation (4D-VAR) is a logical and rigorous mathematical method to obtain the “best” estimate of the model initial conditions from observations and a priori knowledge of the atmospheric state. It is one of the most advanced data assimilation methods today. Automation weather station (AWS) precipitation data is assimilated by 4D-VAR in experiments. Experiment results show that, due to addition of information of AWS precipitation data, the initial field of test is enhanced in meso-scale information, and it matches the model better in thermo-dynamical mechanism. After assimilation, the simulation is improved. The precipitation during the start period in simulation is increased, and the situation of simulating precipitation matches real situation better. The “spin-up” problem of the model is weakened. Experiment results also show that temporal information of AWS precipitation data is very important for assimilation.
关 键 词:四维变分 自动站降水量同化 中尺度数值模式 暴雨模拟
分 类 号:P456.7[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.10.159