检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东师范大学物理系光谱学与波谱学教育部重点实验室,上海200062
出 处:《光学学报》2005年第10期1375-1379,共5页Acta Optica Sinica
基 金:国家教育部博士点基金(20040269010);上海市重点学科和教育部211工程专项基金资助课题
摘 要:固体材料的激光制冷又称反斯托克斯荧光制冷,是近年来刚兴起的全光学制冷技术。该技术的核心问题是制冷材料的选择。以Tm3+掺杂离子为例,从理论上分析了最小制冷能级间距与激光抽运速率的关系,研究了不同抽运速率下制冷功率与能级间距的关系以及热光转换效率与能级间距的关系,获得了最佳热光转换效率与抽运速率的关系,结果表明,最小的制冷能级间距约为4500 cm-1,能级间距在5000~6000 cm-1的宽度是比较合适的。最后探讨了Tm3+掺杂材料用于激光冷却的可行性,并讨论了制冷基体材料的合理选择问题。Laser cooling of solid material is also called anti-Stokes fluorescent cooling, and it is a developing all-optical cooling technology in recent years. The key question of this cooling technique is to choose suitable materials. Taking Tm^3+ ion as an example, relationship between the minimum energy gap and the laser pumping rate is analyzed, and the relationship between the energy gap and the cooling power as well as the relationship between the energy gap and the heat-light converting efficiency under the different pumping rate is studied, then the relationship between the optimal heat-light converting efficiency and the pumping rate is obtained. It is found that energy gap required in the cooling cycle should be at least 4500 cm^-1, It is more appropriate to choose the energy gap at 5000-6000 cm^-1. Finally, the feasibility of laser cooling of thulium-doped material and the choice of host material are briefly discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195