一种粗糙模糊神经网络分类器及其应用  

A rough fuzzy neural network classifier and its application

在线阅读下载全文

作  者:方敏[1] 赵晓霞[1] 孙虹[1] 

机构地区:[1]合肥工业大学电气与自动化工程学院,安徽合肥230009

出  处:《合肥工业大学学报(自然科学版)》2005年第9期1057-1061,共5页Journal of Hefei University of Technology:Natural Science

基  金:安徽省自然科学基金资助项目(01042310)

摘  要:提出了一种粗糙模糊神经网络分类器的模型。其过程为:利用粗糙集理论获取分类知识,根据训练样本建立决策表,进行决策表属性值离散化、属性约简和分类规则的提取;依据约简后决策表的属性、经模糊化处理的属性值及分类规则构造粗糙模糊神经网络分类器。该分类器可以有效地克服粗糙集规则匹配方法抗噪声能力和规则泛化能力差的缺点;同时可简化神经网络的结构,加快网络的训练速度。并详细介绍了该分类器用于汽车车牌字符识别的步骤和实验结果。A model of rough fuzzy neural network classifiers is proposed. The rough set theory is used to acquire the knowledge of classification, which includes decision table construction, attribute discretization, attribute reduction and rule abstract. The rough fuzzy neural network classifier is established according to the reduced attributes, the fuzzilized attribute values and the classification rules. The proposed classifier has better abilities of anti-disturbance and generalization and can simplify the structure of the neural network and speed up the training rate of the network. The steps of applying this classifier to recognition of the car's plate characters and the results are described in detail.

关 键 词:粗糙集 粗糙模糊神经网络 字符识别 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象