检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学信息科学技术学院计算机科学工程系,北京100081
出 处:《北京理工大学学报》2005年第9期778-781,共4页Transactions of Beijing Institute of Technology
基 金:云南省信息技术基金资助项目(2002IT03)
摘 要:提出了一种不需分词的n元语法文本分类方法.与传统文本分类模型相比,该方法在字的级别上利用了n元语法模型,文本分类时无需进行分词,并且避免了可能造成有用信息丢失的特征选择过程.由于字的数量远小于词的数量,所以该分类方法与其它在词级别上的分类方法相比,有效地降低了数据稀疏带来的影响.系统地研究了模型中的关键因素以及它们对分类结果的影响.使用中文TREC提供的数据进行实验,结果表明,综合评价指标Fβ=1达到86.8%.Proposes an approach for Chinese language text classification without word segmentation based on n-gram language modeling. Unlike the case of traditional text classification models, the approach based on character level n-gram modeling avoids word segmentation and explicit feature selection procedures that tends to lose significant amount of useful information. It greatly reduces the problem of sparsity of data, because the size of the vocabulary made up of characters is smaller than that formed from words. Systematic study of key factors in language modeling and their influence on classification shows that the estimated index based on experiments on Chinese TREC attained 86.8%.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3