检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学数理学院,重庆400030 [2]重庆大学计算机学院,重庆400030
出 处:《重庆大学学报(自然科学版)》2005年第10期94-98,共5页Journal of Chongqing University
基 金:国家自然科学基金资助项目(60173060)
摘 要:提出了多重图的线图的概念,研究了多重图的线图连通度的上界和下界.刻画了图的最小度与其线图连通度的关系:若δ(G)≥μ(﹂p/2」+1),则κL(G)≥Lδ(G)-2(μ-1),并通过构造出一系列的图,证明此结果是最好的:条件不能够被削弱,结论不能够被加强.同时,揭示了图的限制性边连通度就是线图连通度,推广了已有文献的结果.The previous concept of line graph is generalized, and the concept of line graph over multigraph is proposed. The line graph of a multigraph G,L( G), is defined to be a graph whose vertices are the edges in G, and there are exactly m edges between two vertices of L(G) if and only if they have exactly m common vertices in G. Both lower bounds and upper bounds are obtained. Furthermore, a sharp lower bound of the connectivities of L(G) is given as follows. For a p-vertex μ-multiple multigraph G, let κL (G) and δL (G) denote the connectivity and the minimum degree of L (G), respectively. If the minimum degree δ(C)≥μ([p/2]+1), then κL(C)≥δL(C)-2(μ-1). It is shown that the lower bound is best possible. It improves the results on the subject.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249