检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学理学院,西安710048 [2]长安大学理学院,西安710064
出 处:《机械科学与技术》2005年第11期1285-1287,共3页Mechanical Science and Technology for Aerospace Engineering
基 金:陕西省教育厅专项科研计划项目(03JK069)资助
摘 要:利用Lagrange方程推导了在轴向周期压载作用下点弹性支承粘弹性杆的运动微分方程,并由动力稳定理论给出了杆的临界频率方程和动力不稳定边界。计算结果表明,对Kelvin模型粘弹性杆来说,粘性系数与点弹性支承处的弹簧刚度对杆的动力稳定性有显著影响,但当粘性系数小于某个量级时,可将该粘弹性杆的动力稳定性问题按弹性杆处理。The differential equation of motion for a viscoelastic rod with point elastic supports under the action of axially periodic load is derived by Lagrange's equation. By using dynamic stability theory, the critical frequency equation and dynamic stability boundary of the rod are obtained. Numerical calculations show that for a viscoelastic rod with Kelvin model, the effect of the viscous coefficient and spring stiffness at the spring supports on dynamic stability of the rod is very obvious, but when the viscous coefficient is smaller than a certain order, the dynamic stability problem of a viscoelastic rod can be dealt with according to the elastic rod.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28