检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学,武汉430033
出 处:《武汉理工大学学报(交通科学与工程版)》2005年第5期710-712,716,共4页Journal of Wuhan University of Technology(Transportation Science & Engineering)
基 金:海军工程大学科研基金项目资助(批准号:E332)
摘 要:将K o lm ogoroff相位重构算法应用于非均匀光纤光栅,提出基于该算法的非均匀光纤光栅相位特性的系统分析方法.即将非均匀光纤光栅视为一个信息系统,由其强度响应谱数字重构相位响应谱及冲激脉冲响应,并由相位谱进一步求出其时延、色散,实现对其相位特征的系统分析.以线性啁啾光纤光栅及变迹啁啾光纤光栅为例进行算法验证.用该方法分析所得相位特征和文献相吻合,说明非均匀光纤光栅可以被视为一个线性的最小相位系统;相位重构算法对于非均匀光纤光栅也是可行的、稳定的.利用此方法,可以通过在频域对强度谱采样,实时获取光纤光栅的相位响应特征.For non-uniform fiber grating,a system analysis method based on phase reconstruction is put forward . The phase response spectrum and impulse response still can be numerically reconstructed from their intensity response spectrum based on kolmogoroff's phase reconstruction method which appears in signal processing field iust as uniform fiber grating,and time-delay and dispersion can be determined accordingly ,then the system analysis of their phase response characteristic can be carried out. In the case of linearly chirped fiber grating and Gauss tapered fiber grating, the arithmetic has been validated. The results show agreement with open literature and indicate that non-uniform fiber grating can also be regarded as linearly minimum-phase system ,and this method is feasible and steady for non-uniform fiber grating. In this way, through sampling, phase response characteristic of fiber grating may be hopefully obtained by real time processing from its intensity response spectrum in laboratory.
分 类 号:TN25[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117