检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]汕头大学计算机科学研究所
出 处:《软件学报》1996年第6期345-353,共9页Journal of Software
基 金:国家自然科学基金;国家863高技术计划与李嘉诚学术基金;国家基础研究攀登计划资助
摘 要:悖论逻辑LP是一个超协调逻辑,发展超协调逻辑(LP)的目的是使得不会从矛盾推出任一命题,但它有一个主要缺点:就是一些在经典逻辑中有效的推理在LP中不再有效;极小悖论逻辑LPm能克服这个缺点,使得在没有矛盾的直接影响下超协调逻辑等价于经典逻辑.LP和LPm原来都只给出语义定义,虽然已有LP的证明论,但如何得到一个LPm的证明论仍是一个未解问题.本文提出了一种可靠与完全的表演算作为LP与LPm的证明论.The LP (logic of paradox) is a paraconsistent logic. One of the motivationsbehind paraconsistent logic, namely LP, is that it should not allow that everything followsfrom a single contradiction. However it has one important drawback: that some classicalinferences would be invalid in LP. The LP.(logic of minimal paradox) can overcome thisdrawback, such that paraconsistent logic would be equivalent to classical logic when therewas not direct effect of a contradiction. Originally, LP and LP. were only defined in semantic. Although some proof theories for LP were introduced, it has left open how to obtain a satisfactory proof theory for LP.. This paper propose the sound and completestableaux with respect to the semantics of LP and LP., respectively.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147