检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xin Leng De-gui Liu Xiao-qiu Song Li-rong Chen
机构地区:[1]Beijing Institute of Computer Application and Simulation Technology, 100854, China [2]Beijing Institute of Applied Physics and Computational Mathematics, 100088, China
出 处:《Journal of Computational Mathematics》2005年第6期647-656,共10页计算数学(英文)
摘 要:In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving singular delay differential equations(DDEs) is presented. Analysis of numerical stability of this methods is given. We consider the two distinct cases: (i)τ≥ h, (ii)τ 〈 h, where the delay τ and step size h of the two-step continuity Runge-Kutta methods are both constant. The absolute stability regions of some methods are plotted and numerical examples show the efficiency of the method.In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving singular delay differential equations(DDEs) is presented. Analysis of numerical stability of this methods is given. We consider the two distinct cases: (i)τ≥ h, (ii)τ 〈 h, where the delay τ and step size h of the two-step continuity Runge-Kutta methods are both constant. The absolute stability regions of some methods are plotted and numerical examples show the efficiency of the method.
关 键 词:Analysis of numerical stability Singular delay differential equations Two-step continuity Runge-Kutta methods
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44