检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hui Ying WANG
机构地区:[1]Center of Mathematical Science, Zhejiang University, Hangzhou 310027 P. R. China
出 处:《Acta Mathematica Sinica,English Series》2005年第5期1229-1240,共12页数学学报(英文版)
摘 要:We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rarefaction wave with finite strength, there exists unique solution to the viscous problem with the same initial data which converges to the given inviscid solution as c goes to zero. The proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure.We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rarefaction wave with finite strength, there exists unique solution to the viscous problem with the same initial data which converges to the given inviscid solution as c goes to zero. The proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure.
关 键 词:Zero dissipation problem P-SYSTEM Centered rarefaction wave
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15