纳米碳酸钙性质对聚氯乙烯复合材料界面及性能的影响  被引量:16

Effect of properties of CaCO_3 nanoparticles on interface and properties of poly(vinyl chloride) composites

在线阅读下载全文

作  者:孙水升[1] 张玲[1] 李春忠[1] 曹宏明[1] 周秋玲[1] 

机构地区:[1]华东理工大学材料科学与工程学院,超细材料制备与应用教育部重点实验室,上海200237

出  处:《化工学报》2005年第11期2233-2239,共7页CIESC Journal

基  金:国家自然科学基金(20236020;20176009);国家基础研究重大项目前期研究专项(2002CCA02200);上海市基础研究重大项目(04DZ14002);教育部<跨世纪优秀人才培养和上海市纳米科技基金项目等资助计划>.~~

摘  要:选择了不同的表面处理剂对纳米CaCO3进行表面改性·研究了不同表面处理剂对CaCO3/PVC纳米复合材料微观结构、界面结合强度、力学性能及加工性能的影响.研究表明,钛酸酯偶联剂处理可使纳米CaCO3颗粒在PVC基体中达到良好分散,明显改善纳米CaCO3颗粒与PVC基体之间的界面结合,并提高其界面结合强度.力学性能和流变性能研究表明,钛酸酯处理的纳米CaCO3填充PVC具有更高的拉伸强度、冲击强度以及更低的平衡转矩,而且CaCO3/PVC复合材料的冲击韧性在填充量为20%(mass)时达到最大值26·5kJ·m-2,是纯PVC的4倍.Poly (vinyl chloride) composites were prepared via a melt blending filled with CaCO3 nanoarticles, which were pretreated with titanate coupling agent and stearic acid respectively. The effects of different agents on the microstructure of composites, the interracial cohesion of CaCO3/PVC and the mechanical properties of composites were studied. The microstructure of CaCO3/PVC nanocomposites was characterized by scanning electron micrograph, and the interracial cohesion between CaCO3 particles and PVC matrix was determined by dynamic mechanical analysis experiments. It was found that CaCO3 nanoparticles were uniformly dispersed in PVC matrix and had a good interracial cohesion with the matrix after treatment with titanate coupling agent. A little amount of nanoparticles agglomeration and some cavities were found after treatment with stearic acid, while a lot of agglomeration and cavities occurred when filled with untreated CaCO3 nanoparticles. Better interracial cohesion and stronger interracial adhesion strength were obtained after the inorganic filler was pretreated with titanate coupling agent, with which the PVC composites filled had lower equilibrium torque, higher tensile strength and notched impact strength. The notched impact strength of composites reached 26.5 kJ · m^-2, which was about 4 times as high as that of neat PVC composites, when the mass ratio of nano-CaCO3/PVC was 20/100.

关 键 词:聚氯乙烯 纳米碳酸钙 界面结合 力学性能 流变性能 增韧 动态力学性能 

分 类 号:TQ32[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象