检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机科学与工程系,上海200433
出 处:《计算机研究与发展》2005年第12期2213-2218,共6页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60402007;60373020);国家"八六三"高技术研究发展计划基金项目(2002AA103011-5);上海市科技发展基金项目(03DZ15019;03DZ14015);教育部科学技术研究重点基金项目(104075)
摘 要:近年来,随着多媒体信息检索技术的不断发展,如何实现高维特征矢量的快速相似性查询成为一个重要的研究课题·为此,人们提出了许多索引结构,包括:R-Tree及其变种、对矢量进行量化近似的VA-File、引入量化思想的A-Tree等等·从公开发表的成果看,这些索引结构在较低维数时,都能够表现出较好的查询性能;而当维数增加时,性能则急剧恶化·为了在更高维数下实现快速相似查询,可采用VA-File和A-Tree中的近似思想,并借助Trie结构来组织和管理压缩后的近似矢量,即所谓的VA-Trie·实验结果表明,在高达128维时VA-Trie仍有查询加速,其性能远好于A-Tree·Since 1990's, great progress has been made in the area of content-based multimedia information retrieval. A very challenging problem emerged at the same time: how to organize high dimensional vectors so that efficient similarity query could be realized. Many index structures have been proposed to solve this problem, such as R-Tree and its variants, VA-File, A-Tree etc. From the published results, it can be concluded that most of these methods could achieve good query performance when the dimensionality is less than 20. However, the performance suffers greatly as the dimensionality increases. To obtain efficient similarity query in higher dimensional spaces, a new index structure called VA-Trie is introduced. The key idea behind VA-Trie is adopting the idea of quantization to compress the vectors and then employing the Trie structure to organize and manage the approximations. The experimental results show that VA-Trie outperforms A-Tree and sequential scan in high dimensional spaces.
分 类 号:TP311.134.3[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.85