检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机与信息技术系
出 处:《模式识别与人工智能》2005年第6期698-707,共10页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金(No.60173027)
摘 要:介绍了一种进化式模糊分类系统。首先,介绍系统的基本特征及结构框架。然后,介绍了一种动态聚类算法,并运用动态聚类算法对输入的训练模式进行动态聚类,每一簇创建一条模糊规则。规则所对应的区域为类椭圆形区域。规则调整的策略是连续改变模糊分类规则的一个参数,使得分类系统对训练模式识别率不能再提高,对不能达到要求的调整,采用遗传算法进行调整。分析了规则调整的方法,给出了调整算法,也介绍了规则的插入和聚合策略,用两个典型的数据集来评测研究的系统,研究的分类系统在识别率与多层神经网络分类器相当,但训练时间远少于多层神经网络分类器的训练时间。This paper introduces an evolving fuzzy classifier system. At first, the basic characteristics and frame of this system are introduced . Then , the dynamic clustering arithmetic which can dynamically cluster the input training patterns is presented. For every cluster, a fuzzy rule with an ellipsoidal region around a cluster center is defined. The strategy of tuning fuzzy rules is that the slopes of the membership functions are tuned successively until there is no improvement in the recognition rate of the training patterns . If this tuning can not satisfy the request , Genetic Algorithms will be used. In this paper , the tuning method and arithmetic, the policy of inserting rules and aggregating rules are discussed. This method has been evaluated by two typical data sets. The recognition rates of our classifier are comparable to the maximum recognition rates of the multilayered neural network classifier, and its training time is much shorter.
关 键 词:模糊分类规则 进化式 椭圆区域 动态聚类 遗传算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222