检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学,航空计算技术研究所
出 处:《西北工业大学学报》1996年第3期366-370,共5页Journal of Northwestern Polytechnical University
摘 要:研究了Barrett提出的解一种描述服从Carreau定律的非牛顿流动的有限元逼近方法,通过简单的Stokes投影技巧,给出该算法中速度变量目前能得到的比较好的一个误差最大模估计式。Though seldom dealt with in engineering literature, non-Newtian flow actually exists in a number of engineering problems. For example it exists in aero engine and it is important in estimating the deformation of blades under high temperautre. We will present our theorem, useful in improving such estimates, that makes it possible to deal with these engineering problems more effectively, such as significantly improving on existing estimates of this kind of deformation. The theorem 1. 2 is first stated at the end of section 1, and its proof is given in detail in section 3, where eqs. (9) through (14) appear.The key to achieving our significant improvement is that we believe we are the first to apply 'Stokes projection' trick to this problem where the test function space is Wl.r(Ω) (r<2 or,>2) in place of H 1'2(Q).We improve significantly on the error estimates of Barrett et al[3] for velocity in the finite element approximation of non-Newtian flow by giving quasi-optimal estimates with the help of theorem 1. 2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40