服从Carreau定律的非牛顿流动有限元速度误差的最大模估计  

Maximum Norm Error Estimates Useful in Engineering of a Non-Newtian Flow Obeying Carreau Law

在线阅读下载全文

作  者:袁超伟[1] 周磊[1] 周天孝[1] 

机构地区:[1]西北工业大学,航空计算技术研究所

出  处:《西北工业大学学报》1996年第3期366-370,共5页Journal of Northwestern Polytechnical University

摘  要:研究了Barrett提出的解一种描述服从Carreau定律的非牛顿流动的有限元逼近方法,通过简单的Stokes投影技巧,给出该算法中速度变量目前能得到的比较好的一个误差最大模估计式。Though seldom dealt with in engineering literature, non-Newtian flow actually exists in a number of engineering problems. For example it exists in aero engine and it is important in estimating the deformation of blades under high temperautre. We will present our theorem, useful in improving such estimates, that makes it possible to deal with these engineering problems more effectively, such as significantly improving on existing estimates of this kind of deformation. The theorem 1. 2 is first stated at the end of section 1, and its proof is given in detail in section 3, where eqs. (9) through (14) appear.The key to achieving our significant improvement is that we believe we are the first to apply 'Stokes projection' trick to this problem where the test function space is Wl.r(Ω) (r<2 or,>2) in place of H 1'2(Q).We improve significantly on the error estimates of Barrett et al[3] for velocity in the finite element approximation of non-Newtian flow by giving quasi-optimal estimates with the help of theorem 1. 2.

关 键 词:非牛顿流 有限元法 误差估计 Carreau定律 

分 类 号:O357.1[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象