检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京应用物理与计算数学研究所,北京100088
出 处:《物理学进展》2005年第4期386-406,共21页Progress In Physics
基 金:国家重点基础研究专项经费资助;国家自然科学基金(批准号:10147201;10247003);激光技术创新基金(批准号:20030512);国家自然科学基金重点项目(批准号:10335010);中国工程物理研究院科学技术基金(批准号:200404430)
摘 要:当光波在大气中传播时,由于大气湍流的作用,其光束质量将会极大地恶化。对于这类问题的处理,长期以来都是以Tartask ii等人的理论为指导,而他们的理论是根据Kolmogrov于1941年建立的局地均匀各向同性湍流理论(K41)建立的,所以K41理论是这一领域奠基的基石。然而,随着湍流研究的深入,人们已经逐渐意识到K41湍流理论的各方面的缺点,其中尤其明显的是,K41理论忽略了湍流的间歇特征。在湍流现代理论中,湍流间歇性的研究一直是处于中心位置。经过数十年的不懈的努力,目前人们已经对湍流间歇性有了一些初步的成果和认识。本文综述了试图将湍流间歇性引入随机介质中光传播问题的考虑之中的各种尝试。我们首先结合光学问题的需要对湍流及其间歇性研究现状及重要成果进行了概要的回顾和说明。在此基础上,我们以两种方式对间歇性大气湍流中光传播问题进行分析:首先,我们以一种简单的非Gauss场模型为基础分析间歇性大气湍流中的光场统计性质;然后,我们将统计矩方程展开到四阶累积函数,分析了近Gauss场附近的光场统计性质。我们还以层次结构模型为基础对二阶统计矩进行了进一步的研究。Because of the effects of atmospheric turbulence, the quality of a wave beam will deteriorate seriously when it propagates through the atmosphere. To the problems of wave propagation in turbulent media, the essential guideline is always the well-rounded theory established by Tartaskii and other Russian scientists in the middle of the latest century. It is well known that their theory is built on the base of the theory of locally homogeneous isotropic turbulence developed by Kolmogrov in 1941 (K41), so the K41 theory is in fact the foundation to the fields of wave propagation in turbulent media. While along with the development of turbulence theory, the flaws of K41 theory were understood gradually, and in these flaws, the irrationally neglect of intermittency is evidently. The intermittency, which is one of the core contents in modem turbulence theory, is widely investigated, and today we have an elementary understand about it. In this paper, we will consider the optical effects of the intermittency of atmospheric turbulence. We first give a thoroughly illustration to the turbulent intermittency and some important theoretic results about it. Then, we study the intermittent effects to light propagation by two methods. In the first method, we study the intermittent effect by a simplified non-Gaussian filed model which can model the atmospheric dielectric permittivity (or refractive-index) fluctuation approximately. In the second method, we explicitly expand the equations of optical statistical moments to the four-order cumulant functions and resolve their solutions. To the second-order moment which is important in optical applications, we analyze it emphatically by the hierarchical structures model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.180.66