MODELING HEADCUT DEVELOPMENT AND MIGRATION IN UPLAND CONCENTRATED FLOWS  

MODELING HEADCUT DEVELOPMENT AND MIGRATION IN UPLAND CONCENTRATED FLOWS

在线阅读下载全文

作  者:Sean J. BENNETT Carlos V. ALONSO 

机构地区:[1]Department of Geography, University at Buffalo, Buffalo, NY 14261-0055, USA [2]USDA-ARS National Sedimentation Laboratory, P.O. Box 1157, Oxford, MS 38655

出  处:《International Journal of Sediment Research》2005年第4期281-294,共14页国际泥沙研究(英文版)

摘  要:On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.

关 键 词:Soil erosion Headcuts RILLS GULLIES Jet impingement 

分 类 号:S157[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象