检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学航空科学与工程学院,北京100083
出 处:《北京航空航天大学学报》2005年第12期1342-1346,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金-中国工程物理研究院联合NSAF资助项目(10376002)
摘 要:为研究模糊参数约束条件下振动结构模糊有限元平衡方程特征值的问题,通过模糊集合理论中隶属度的性质,把振动结构的不确定模糊参量表示成区间形式,得到区间有限元平衡方程,利用所提Taylor级数展开法求解可以得到特征值所在的区间集.将α水平截集下得到的区间解,通过模糊分解定理构造出振动结构模糊有限元平衡方程的模糊解,从而可以得到模糊参数约束条件下振动结构的固有频率的变化范围,为结构的模糊可靠性评价奠定了基础.通过数值算例表明了所提方法的可行性.To study the eigenvalues problem of vibration structure with fuzzy parameters, the Taylor series expansion method was proposed. Based on the property of membership level, the uncertain fuzzy parameters were expressed in the interval forms, and accordingly the fuzzy finite element equilibrium equation could be expressed by interval finite element equilibrium equation. The Taylor series expansion method was used to compute the eigenvalues interval sets of interval finite element equilibrium equation for the purpose of calculating the eigenvalues variety range of vibration structure with fuzzy parameters. The fuzzy result sets of eigenvalues could be constructed by interval result sets gained from computing the interval finite element equilibrium equation under every a-level through fuzzy decompose theorem. Consequently the variety range of natural frequencies can be obtained concerning vibration structures with fuzzy parameters and establish the foundation for fuzzy reliability evaluation. A numerical example is considered to illuminate the practicability of the method presented.
分 类 号:O327[理学—一般力学与力学基础] O159[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3