检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电子信息与电气工程学院,上海200030
出 处:《Journal of Southeast University(English Edition)》2005年第4期427-431,共5页东南大学学报(英文版)
摘 要:With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree.针对人脸识别中人脸图像的特征提取问题,提出了一种将全局特征与局部特征相融合的人脸识别方法.全局特征的提取采用主成分分析算法.主动外观模型定位58个特征点,在其中17个特征点处进行Gabor小波变换则可提取局部特征.归一化的全局匹配度(局部匹配度)可由测试图像和训练图像的全局特征(局部特征)得到.对归一化的全局匹配度和局部匹配度进行融合后,融合匹配度最大的训练图像所属的类即为识别结果.实验利用2个人脸图像数据库(AR和SJTUIPPR)测试该方法的识别率,结果表明该方法要优于PCA和EBGM,并且在一定的表情、光照和姿态变化的条件下是有效、稳健的.
关 键 词:face recognition feature fusion global features local features
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.142.123