检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈彬[1]
出 处:《Journal of Southeast University(English Edition)》2005年第4期513-516,共4页东南大学学报(英文版)
基 金:TheNationalNaturalScienceFoundationofChina(No.10471120),theNaturalScienceFoundationofXuzhouNormalUniversity(No.04XLA15).
摘 要:Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.研究了随机环境中的Burgers方程.为了给出随机Burgers方程的精确解,只讨论变系数Burgers方程的系数经白噪声W(t)=B·(t)扰动所得的Wick型随机Burgers方程(B(t)是Brown运动),利用齐次平衡原理和Hermite变换给出了Wick型随机Burgers方程的自Bcklund变换和随机孤立子解的精确表达式,同时也研究了一般情形的Wick型随机Burgers方程.
关 键 词:Wick-type stochastic Burgers equation auto-Baecklund transformation stochastic soliton solution white noise Hermite transform homogeneous balance principle
分 类 号:O211.6[理学—概率论与数理统计] O175.2[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.150