检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学土木工程系清华大学结构工程与振动教育部重点实验室,北京100084
出 处:《四川大学学报(工程科学版)》2006年第1期10-14,共5页Journal of Sichuan University (Engineering Science Edition)
摘 要:为了研究铝合金的材料非线性对其受弯构件变形的影响,采用有限元方法研究了铝合金受弯构件荷载-挠度关系的影响因素,并以主要因素为参数,计算了126根梁的荷载-挠度曲线。根据欧规9(Eurocode 9)中给出的弯矩-曲率公式推导出荷载-挠度公式,并用数值积分的方法计算了一些受弯构件的荷载-挠度关系。讨论了有限元计算结果与理论计算结果的差异。以有限元计算结果为基础,用非线性拟合的方法修正了荷载-挠度公式中的系数,给出了铝合金受弯构件荷载-挠度关系的计算方法。结果表明,计算铝合金受弯构件的变形时需要考虑材料非线性的影响,本文的计算方法准确性较高。In order to investigate the nonlinear deformation of aluminum bending members, the influencing factor analysis of load-deflection relationship was presented adopting finite-element analysis (FEA) methods. The load-deflection curves of 126 aluminum bending members were calculated considering structural dimensions, material properties and load distribution. The theoretical formula of load-deflection curves was deduced from the moment-curvature relationship proposed in EC 9, some load-deflection curves were evaluated by numerical integrating. The differences between the results of FEA method and of theoretical method were discussed. The coefficients of the theoretical formula were modified by FEA results using non-linear fitting method. The semi-empirical formula for computing the load-deflection curve of aluminum bending members was then proposed. The result shows that the influence of nonlinear material properties of aluminum alloy should be considered when computing the deformation of aluminum bending members, and the calculating methods of this paper are comparatively accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40