LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM  

LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM

在线阅读下载全文

作  者:Qu Daiming Zhu Guangxi 

机构地区:[1]Dept of Electro. & lnfo. Eng., Huazhong University of Sci. & Tech., Wuhan 430074, China

出  处:《Journal of Electronics(China)》2006年第1期1-6,共6页电子科学学刊(英文版)

基  金:Supported by the National High Technology ResearchDevelopment Program of China (863 Program)(No.2001AA 123014)

摘  要:The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precoder of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10-6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various inter-leaver size and error control coder of various constraint length is also investigated.

关 键 词:Orthogonal Frequency Division Multiplexing (OFDM) Linear precoding Turbo equalization Linear Minimum Mean Square Error (LMMSE) 

分 类 号:TN91[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象