检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学电子与信息工程学院,西安710049
出 处:《西安交通大学学报》2006年第2期133-137,共5页Journal of Xi'an Jiaotong University
基 金:国家高技术研究发展计划资助项目(2003AA001048)
摘 要:提出了一种基于积木块识别的遗传算法,该算法通过对进化过程中的候选积木块进行识别与利用来加速搜索,从而避免遗传算法随机搜索的盲目性.利用经典的对称旅行商问题求解过程来测试各种识别方法,再利用积木块的识别结果改进原有遗传算法,包括改进积木块的识别率以及基于积木块的交叉、变异算子.与基本遗传算法的计算结果对比分析表明,所提算法可显著提高遗传算法的搜索效率,减小遗传算法随机搜索的波动性.A genetic algorithm (GA) based on building block recognition was proposed, in which building block candidates were recognized in evolving process to speed up the search so as to avoid the blindness of GA random searching. The typical symmetric TSP (traveling salesman problem) solving process was used to test various recognition methods, and then the test results were used to improve the traditional GA, including improving the recognition rate of building blocks and mutation and crossover operators based on building block. Compared with the computational result of traditional GA, it shows that the searching efficiency of GA can be improved remarkably and the fluctuation of random searching can be reduced by recognizing building block.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] U116[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.149.185