无限长条功能梯度材料自由边界反平面裂纹动力学问题  被引量:1

Finite length crack moving problem for a infinite length strip of FGM under antiplane shear loading

在线阅读下载全文

作  者:王建国[1] 毕贤顺[1] 陈晓岚[2] 

机构地区:[1]黑龙江科技学院数力系,黑龙江哈尔滨150027 [2]中国航天科工集团第二研究院二部,北京100854

出  处:《哈尔滨工业大学学报》2006年第2期310-311,325,326,共4页Journal of Harbin Institute of Technology

基  金:黑龙江省自然科学基金资助项目(A01~10);黑龙江省教育厅资助项目(10551269)

摘  要:利用功能梯度材料剪切模量的指数模型,对无限长条自由边界反平面Yoffe裂纹的动力学问题进行了研究.通过积分变换求得了应力场和位移场,将混合边界值问题简化为一组对偶积分方程,并利用Copson方法对动应力强度因子进行了求解.分析了裂纹运动速度、梯度参数及裂纹长度对裂纹尖端动应力强度因子的影响.数值计算表明,动应力强度因子随着裂纹运动速度和裂纹长度的增加而增大,随着梯度参数的增加而降低.A Yoffe crack in an infinite strip of functionally graded material (FGM) under antiplane shear loading is considered. The crack is assumed to possess a finite length while it propagates at a constant velocity. It is assumed that the shear modulus varies with the coordinate vertical to the moving crack in an exponential form. The stress field and displacement field at the crack tip are solved by using integral transforms; the mixed boundary value problem is reduced to a dual integral equation by the method of Copson. The numerical results show that the dimensionless dynamic stress intensity factor increases with the dimensionless crack speed as the crack length is increased when the graded parameter is constant and decreases with the graded parameter as the crack length is decreased when the crack speed is constant.

关 键 词:功能梯度材料 梯度参数 位移场 应力场 动应力强度因子 

分 类 号:O343.7[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象