检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学计算机科学与技术系,北京100084
出 处:《清华大学学报(自然科学版)》2006年第1期78-81,共4页Journal of Tsinghua University(Science and Technology)
基 金:国家"八六三"高技术项目(2004AA117010);国家自然科学基金资助项目(60275014)
摘 要:为进一步提高文语转换系统中韵律结构预测的准确度,提出了一个基于概率频度的统计模型的方法,预测韵律词和韵律短语边界两级韵律结构。该方法提取与韵律词和韵律短语边界有关的语言学特征(词性、语法词、长度和位置等),并进行样本训练计算各个特征的概率频度值,最终分别建立韵律词和韵律短语的统计模型。实验结果表明:统计模型的方法对于韵律词和韵律短语边界预测的正确率分别可达90.6%和84.6%,并与决策树算法和T ransform ation-based learn ing(TBL)转换规则学习算法比较,提高10%以上的正确率。The accuracy nf prosody structure prediction in text-to-speech (TTS) conversion systems is improved by a statistical model based on the probability frequency to detect the two-tier prosodic hierarchy, including prosodic words and prosodic phrases. The system fast extracts linguistic features related to the prosodic structure such as part of speech, lexical words, length, and position information, Then, the probability frequency for each selected feature is calculated with statistical models designed for the prosodic words and phrases. Tests show that the correct identification rates of prosodic words and phrases are improved to 90.6% and 84.6% using the statistical model. The statistical model gives 10% better performance than the decision tree Transformation based learning (TBL) algorithms.
关 键 词:文字信息处理 韵律词 韵律短语 概率频度 统计模型
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63