检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学精密仪器与机械学系
出 处:《推进技术》2006年第1期1-4,47,共5页Journal of Propulsion Technology
基 金:国家杰出青年科学基金(50425516);教育部跨世纪优秀人才培养计划基金资助
摘 要:在涡轮泵等机械设备的故障诊断中,多类故障诊断是经常出现的问题。为提高多类故障诊断速度,在球结构支持向量机的基础上,对其分类规则进行改进,充分考虑分类球的大小不同,经过理论分析和实验验证得到样本点落在分类球外和分类球重叠区域的最佳分类公式。用该算法和其它几种常用算法对涡轮泵模拟故障进行分类比较,结果表明,基于改进型球结构支持向量机的故障诊断算法学习速度更快,诊断效果好。Multi-category faults were common in turbo-pump and other machines. In order to speed up the multi-category faults diagnosis, an improved sphere support vector machine was proposed in this paper. The sizes of class spheres are fully taken into account, and better classification rules outside the spheres and in the intersections of the spheres are derivated by many theoretic analyses and experiments. This new method and several other normal methods are used in the diagnosis of simulated multi-category faults in turbo-pump. Results show that the diagnosis time is much shorter and the diagnosis correct rate is high with the improved sphere support vector machines.
分 类 号:V434.21[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229