检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王纪辉[1]
机构地区:[1]山东大学数学与系统科学学院
出 处:《山东大学学报(理学版)》2006年第1期21-23,共3页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(10471078);山东省自然科学基金资助项目(Y2003A01)
摘 要:设G是一个简单图,其顶点集为V(G)而边集为E(G).S E(G)称为G的一个边覆盖,如果由S导出的子图是G的一个生成子图.G的边覆盖色数χc′(G)是E(G)所能划分成的最大边覆盖数.已知δ-1χc′(G)δ,由此将χc′(G)=δ的图称为CⅠ类图,否则称为CⅡ类图.显然,图的边覆盖染色分类问题是NP-完全的.给出了近似二部图是CⅠ类图的一个充分条件,而且该条件中的下界是最好的.Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge covering of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge coverings which construct a partition of E(G) is called the edge covered chromatic index of G, denoted by X'c (G). It is well known that 8 - 1 ≤X'c (G) ≤δ, then G is called a graph of CⅠ class if X'c (G) = δ, otherwise G is called a graph of C Ⅱ class. It is easy to prove that the problem of deciding whether a given graph is CⅠ class or CⅡ class is NP-complete. A sufficient condition for a nearly bipartite graph to be CⅠ class is given. It is showen that the results are the best possible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15