检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电气应用》2006年第1期64-66,共3页Electrotechnical Application
摘 要:用遗传算法解决电力系统机组组合及机组间的负荷分配问题。在简单遗传算法基础上,提出了将自适应遗传算法应用于机组优化组合。该算法的交叉率随种群中的最大适应度值和每代种群的平均适应度值的变化而自动改变;变异率随适应度值和进化代数的变化而自动调节。通过对算例的计算分析表明,该算法与简单遗传算法相比具有更高的精度和收敛度。How to solve unit commitment problem and load dispatch of power system by genetic algorithm is researched. A adaptive genetic algorithm, that is applied to unit commitment, is put forward on the basis of simple genetic algorithm. It applies adaptive crossover rate, which is changed with the maximum colony adaptation degree and the average colony adaptation degree of each generation. The variation rate of adaptive GA is adjusted by the colony adaptation degree and the evolutionary generation. The results of calculation example shows that the adaptive genetic algorithm is more precise and more convergent than simple genetic algorithm in the unit commitment.
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69