检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bing-sheng He Li-zhi Liao Xiao-ming Yuan
机构地区:[1]Department of Mathematics, Nanjing University, Nanjing 210093, China [2]Department of Mathematics, Hong Kong Baptist University, Hong Kong, China [3]Department of Mathematics, City University of Hong Kong, Hong Kong, China
出 处:《Journal of Computational Mathematics》2006年第1期33-44,共12页计算数学(英文)
摘 要:To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the Logarithmic-Quadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP. The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the Logarithmic-Quadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP. The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.
关 键 词:Logarithmic-Quadratic proximal method Nonlinear complementarity problems Prediction-correction Inexact criterion
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229