满意特征选择及其应用  被引量:5

Satisfactory feature selection and its applications

在线阅读下载全文

作  者:张葛祥[1] 金炜东[1] 胡来招[2] 

机构地区:[1]西南交通大学电气工程学院,四川成都610031 [2]电子对抗国防科技重点实验室,四川成都610036

出  处:《控制理论与应用》2006年第1期19-24,共6页Control Theory & Applications

基  金:国家自然科学基金资助项目(60572143);国家电子对抗重点实验室基金项目(NEWL51435QT220401);西南交通大学博士生创新基金资助项目(2003-12);教育部骨干教师资助计划项目(教技司[2000]65号)

摘  要:实际应用中的特征选择是一个满意优化问题.针对已有特征选择方法较少考虑特征获取代价和特征集维数的自动确定问题,提出一种满意特征选择方法(SFSM),将样本分类性能、特征集维数和特征提取复杂性等多种因素综合考虑.给出特征满意度和特征集满意度定义,设计出满意度函数,导出满意特征集评价准则,详细描述了特征选择算法.雷达辐射源信号特征选择与识别的实验结果显示,SFSM在计算效率和选出特征的质量方面明显优于顺序前进法、新特征选择法和多目标遗传算法.证实了SFSM的有效性和实用性.Feature selection is essentially a satisfactory optimization problem in engineering applications. Most of the existing feature selection methods did not consider the cost of feature extraction and automatic decision of the dimension of feature subset. In this paper, a novel approach called satisfactory feature selection method (SFSM) is proposed. SFSM considers compromisingly classification performance of feature samples, the dimension of feature set and the complexity of feature extraction. Feature satisfactory rate and feature set satisfactory rate are defined. Several satisfactory rate functions are designed. Satisfactory feature set evaluation criterion is given in a mathematical way. Satisfactory feature selection algorithm is described in detail. Experimental results of radar emitter signal feature selection and recognition show that SFSM is superior to sequential forward selection using distance criterion, new feature selection method and multi-objective genetic algorithm in computing efficiency and feature qualities. Hence, the validity and applicability of the proposed method are verified.

关 键 词:优化 满意优化 特征选择 识别 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] O235[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象