机构地区:[1]Department of Preventive Medicine, Public Health School, Shanghai Second Medical University, No. 280, Chongqing South Road, Shanghai 200025, China [2]Institute of Environmental Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China [3]Center for Disease Control & Prevention, Huangpu District, Shanghai 200002, China
出 处:《Biomedical and Environmental Sciences》2006年第1期47-52,共6页生物医学与环境科学(英文版)
基 金:This research was supported by the Natural Natural Science Foundation (No. 39870664).
摘 要:Objective To develop a coated electrode of immobilized denitrificants and to evaluate the performance of a bioelectrochemical reactor to enhance and control denitrification, Methods Denitrifying bacteria were developed by batch incubation and immobilized with polyvinyl alcohol (PVA) on the surface of activated carbon fiber (ACF) to make a coated electrode. Then the coated electrode (cathode) and graphite electrode (anode) were transferred to the reactor to reduce nitrate. Results After acclimated to the mixtrophic and autotrophic denitrification stages, the denitrifying bacteria could use hydrogen as an electron donor to reduce nitrate, When the initial nitrate concentration was 30.2 mg NO3-N/L, the denitrification efficiency was 57.3% at an applied electric current of 15 mA and a hydraulic retention time (HRT) of 12 hours. Correspondingly, the current density was 0.083 mA / cm^2. The nitrate removal rate of the reactor was 34,4 g NO3-N / m^3,d, and the surface area loading was 1.34 g NO3-N / m^2.d. Conclusion The coated electrode may keep high quantity of blomass, thus achieving a high denitrification rate. Denitrification efficiencies are related to HRT, current density, oxidation reduction potential (ORP), dissolved oxygen (DO), pH value, and temperature,Objective To develop a coated electrode of immobilized denitrificants and to evaluate the performance of a bioelectrochemical reactor to enhance and control denitrification, Methods Denitrifying bacteria were developed by batch incubation and immobilized with polyvinyl alcohol (PVA) on the surface of activated carbon fiber (ACF) to make a coated electrode. Then the coated electrode (cathode) and graphite electrode (anode) were transferred to the reactor to reduce nitrate. Results After acclimated to the mixtrophic and autotrophic denitrification stages, the denitrifying bacteria could use hydrogen as an electron donor to reduce nitrate, When the initial nitrate concentration was 30.2 mg NO3-N/L, the denitrification efficiency was 57.3% at an applied electric current of 15 mA and a hydraulic retention time (HRT) of 12 hours. Correspondingly, the current density was 0.083 mA / cm^2. The nitrate removal rate of the reactor was 34,4 g NO3-N / m^3,d, and the surface area loading was 1.34 g NO3-N / m^2.d. Conclusion The coated electrode may keep high quantity of blomass, thus achieving a high denitrification rate. Denitrification efficiencies are related to HRT, current density, oxidation reduction potential (ORP), dissolved oxygen (DO), pH value, and temperature,
关 键 词:Bio-electrochemical reactor Immobilized microorganism ELECTROLYSIS Coated electrode DENITRIFICATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...