摩擦系统倍周期分岔细结构的研究  被引量:1

Study on the Fine Structure of the Period-doubling Bifurcation in Friction System

在线阅读下载全文

作  者:牛志仁[1] 陈党民[1] 

机构地区:[1]陕西省地震局

出  处:《中国地震》1996年第1期16-25,共10页Earthquake Research in China

基  金:地震科学联合基金

摘  要:本文研究了服从双状态变量本构律的单自由度摩擦系统的准静态运动。通过对相平面上运动轨迹的直接观察,以及运用Poincare截面和功率谱分析方法,对该系统的倍周期分岔和混沌行为进行了分析。研究结果表明,这样一个简单的摩擦系统可具有一个非常复杂的耗散结构。仅改变弹簧刚度,这个摩擦系统便可以朝平衡态、准周期态和混沌态等不同的状态演化。同时,与罗辑斯蒂映象类似,这些状态可以通过系统参数──弹簧刚度的连续改变而相继转换。即,本文对于服从双状态变量本构律的单自由度摩擦系统找到了一条由平衡态经过准周期态到达混沌态的倍周期分岔道路。对于这个信周期分岔序列,仿照Feigenbaum,确定了累进比δn:δ1=5.75,δ2=6.03,δ3=3.77,δ4=3.94另外,在相平面上给出了混沌吸引子的图形。The quasi-static behavior in a single degree of freedom elastic system with a two-state variable friction law has been studied in this paper. The period-doubling bifurcation and chaotic phenomena of the system are analyzed by investigating phase trajectories, Poincare maps and analyzing power spectra.We found that such a simple friction system can have a complex dissipative structure. As changing the spring stiffness, the system may be evolved to different states such as equilibrium, quasi-period and chaos,etc. Simultaneously, the states can be transformed one after another similar as logistic map when system parameter-spring stiffness is continuously changed. The road is found that a period-doubling bifurcation route to chaos from equilibrium state cross quasi-period state.For the period-doubling bifurcation sequence, following feigenbaum, the ratio δn is determined as δ= 5. 75, δ2= 6. 03,δ3= 3. 77, δ4=3. 94and chaotic attractor is illustrated in phase plane.

关 键 词:摩擦 倍周期 地震 成因 

分 类 号:P315.1[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象