对偶扩张代数的Frobenius态射和固定点代数  被引量:1

Probenius Morphisms and Fixed-Point Algebra of the Dual Extension Algebras

在线阅读下载全文

作  者:陈健敏[1] 林亚南[1] 

机构地区:[1]厦门大学数学科学学院,厦门361005

出  处:《数学学报(中文版)》2006年第2期347-352,共6页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(10371101)

摘  要:设A是由箭图Q和关系I所确定的代数,D(A)是代数A的对偶扩张代数, 对应的箭图Q*和关系I*由Q和I决定.本文证明:带关系箭图(Q*,I*)的自同构由带关系箭图(Q,I)的自同构决定;D(A)的Frobenius态射由A的Frobenius态射完全决定;代数D(A)的固定点代数同构于相应的代数A的固定点代数与A°P的固定点代数的张量积,特别地,当Q为单的箭图时,代数D(A)的固定点代数同构于代数A的固定点代数的对偶扩张代数.Let A be the algebra defined by a quiver Q and a relationship I, D(A) the dual extension of A. D(A) is defined by the the quiver Q^* and relations I^*. In this paper, the following results are shown. The quiver automorphism of the quiver (Q^*, I^*) is determined by the quiver automorphism of (Q, I); the Frobenius morphism of D(A) is determined by the Frobenius morphism of A; the fixed-point algebra of D(A) is isomorphisic to the tensor of the fixed-point algebra of A and the fixed-point algebra of A^op. Specially, in the case when Q is simple quiver, the fixed-point algebra of D(A) is isomorphisic to the dual extension of the fixed-point algebra of A.

关 键 词:对偶扩张 Frobenius态射 固定点代数 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象