检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学应用数理学院理论物理研究所,北京100022
出 处:《高能物理与核物理》2006年第3期191-195,共5页High Energy Physics and Nuclear Physics
摘 要:用Faddeev-Jackiw(FJ)方法对与规范场偶合的规范自对偶场进行了研究,获得了一个新的辛Lagrangian 密度,导出了此系统的FJ广义括号,并对其进行了FJ量子化.进而把FJ方法和Dirac方法进行了比较,发现在对此系统的量子化中,两种方法所给出的量子化结果完全是等价的.通过分析可知FJ方法比Dirac方法要简单, 因FJ方法不需要区分初级约束与次级约束,而且也不需要区分第一类约束和第二类约束.故与Dirac方法相比, FJ方法是一种计算上更为经济和有效的量子化方法.A new symplectic Lagrangian density and Faddeev-Jackiw (FJ) generalized brackets of the gauge invariant self-dual fields interacting with gauge fields have been obtained and FJ quantization of this system has been presented. Furthermore, the FJ method is compared with Dirac method and the results indicate that the two methods are equivalent in the quantization of this system. After analyzing, it can be found in this paper that the FJ method is really simpler than the Dirac method, namely, the FJ method obviates the need to distinguish primary and secondary constraints and the first- and the second-class constraints. Therefore, the FJ method is a more economical and effective method of quantization.
关 键 词:规范场 自对偶场 Faddeev-Jackiw方法 正则量子化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38